

FInest – Future Internet enabled optimisation
of transport and logistics networks

D4.3

Interim specification for transport and logistics
experimentation environment

Project Acronym FInest

Project Title Future Internet enabled optimisation of transport and logistics
networks

Project Number 285598

Workpackage #WP4 Experimentation Environment

Lead Beneficiary IBM

Editor Fabiana Fournier IBM

Contributors Moti Nisenson IBM

 Guy Sharon IBM

Reviewers Cyril Alias UDE

 Agathe Rialland MRTK

Dissemination Level Public

Contractual Delivery Date 30/9/2012

Actual Delivery Date 30/9/2012

Version V1.0

The research leading to these results has received funding from the European Community's Seventh
Framework Programme [FP7/2007‐2013] under grant agreement no. 285598

FP7‐2011‐ICT‐FI — FInest

Abstract

Work package 4 in the FInest project deals with the identification and design of an
experimentation environment for testing, demonstrating, and evaluating the technologies
developed during the project based on FInest use cases.

This document is a straightforward continuation of D4.2 "Requirements and design of transport
and logistics experimentation environment" and describes the technical specification for the
conceptual design presented in D4.2. The main goal of the proposed architecture is to satisfy
the conceptual design and requirements of the experimentation environment envisioned in
FInest, allowing running the specified use cases scenarios in phase 2 of the project and large
trials in phase 3.

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 2 of 33

FP7‐2011‐ICT‐FI — FInest

Document History

Version Date Comments

V0.1 15/8/12 First draft

V0.2 23/8/12 Updates after discussions with WP2

V0.3 1/9/12 Updates after IBM internal review

V0.4 6/9/12 Updates after project plenary meeting

V0.5 21/9/12 Updates after external review

V1.0 30/9/12 Submitted version

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 3 of 33

FP7‐2011‐ICT‐FI — FInest

Table of Contents

Abstract ... 2

Document History ... 3

Table of Contents .. 4

List of Tables.. 5

List of Figures .. 5

Acronyms... 6

1. Introduction .. 7

2. FInest experimentation environment overview ... 7

2.1. What is the main goal of the experimentation environment?.................................... 7

2.2. Users of FInest experimentation environment ... 8

2.3. Terms ... 8

2.4. Experiment execution in FInest EE .. 9

2.4.1. Create test scenario... 10

2.4.2. Configure experiment.. 11

2.4.3. Execute experiment... 12

2.4.4. Report .. 13

2.4.5. Re‐using an existing test.. 13

2.4.6. Ending an execution .. 14

2.5. Tightly connection with work package 2 "Use case specification"............................ 14

3. Technical specification of FInest EE .. 15

3.1. FInest experimentation environnent components.. 18

3.2. Data types definitions.. 19

3.3. Interfaces definitions ... 24

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 4 of 33

FP7‐2011‐ICT‐FI — FInest

3.3.1. Non‐component interfaces ... 24

3.3.2. Component interfaces... 26

3.4. Association of a TCP ID to a test .. 32

4. Summary and next steps... 33

List of Tables

Table 1: Example snippet of the "real‐time event handling" use case test scenario.................. 10

Table 2: Example for an experiment for the "real‐time event handling" use case test scenario11

Table 3: Example of an experiment test after execution.. 13

List of Figures

Figure 1: Experimentation process in FInest EE .. 10

Figure 2: Example of system notifications .. 12

Figure 3: Intersections points between WP2 and WP4 .. 15

Figure 4: FInest experimentation environment architecture ... 17

Figure 5: Association of a TCP ID to a test... 33

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 5 of 33

FP7‐2011‐ICT‐FI — FInest

Acronyms

Acronym Explanation

BCM Business Collaboration Module

CRUD Create, Read, Update, Delete

EE Experimentation Environment

ECM E-Contracting Module

EPM Event processing Module

FInest Future Internet Enabled Optimisation of transport and Logistics Business
Networks

KPI Key Performance Indicator

RDBMS Relational Database Management System

T&L Transport and Logistics

TCP Transport Chain Plan

TPM Transport Planning Module

WP Work Package

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 6 of 33

FP7‐2011‐ICT‐FI — FInest

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 7 of 33

1. Introduction

FInest (Future Internet Enabled Optimisation of transport and Logistics Business Networks)
Work Package 4 (WP4) deals with the identification and design of an Experimentation
Environment (EE) for testing, demonstrating, and evaluating the envisioned technologies
devised in FInest for the transport and logistics domain. The aim is to provide a suitable
environment for conducting the experiments for the use case scenarios specified in FInest in
phase 2 and for large trials in phase 3. The proposed architecture supports inclusion of physical
sites and real data, as well as simulated data for cases in which real-time data can not be
obtained.

Deliverable 4.2 "Requirements and design of transport and logistics experimentation
environment"1 provides a found list of requirements for FInest experimentation environment
followed by a high level architecture of such an environment that satisfies the list of
requirements. This report follows the conceptual design and provides a first technical
specification of the different modules and interfaces of the architecture.

2. FInest experimentation environment overview

2.1. What is the main goal of the experimentation
environment?

As stated in D4.2 "Requirements and design of transport and logistics experimentation
environment", the main goal of FInest EE is to provide a means via which business people and
different stakeholders in the Transport and Logistics (T&L) supply chain can explore, interact
with, understand how the FInest technology will work in practice, and ultimately satisfy
themselves that the system will meet their business requirements (Does the system deliver the
expected business functions?)

FInest EE will provide a "safe environment" in which people can "try and play" with, using
FInest to test new collaborative scenarios before these processes are implemented in practice,
rather than "assuming" how the new business collaborations will look like. To some degree,
FInest EE can also serve as a public relations exercise as end users are involved so they can gain
some confidence in understanding how to use the proposed platform, and very importantly, can
start to see the benefits of using it.

Specifically, the proposed design of the EE provides an environment that can make use of real
data and physical sites as well as simulation environment in which data is injected into the
system. The ultimate goal is that the specified EE will enable the execution of the use cases
specified in FInest in phase 2, and allow for large trials in phase 3.

1 Available at http://www.fi‐ppp.eu/

FP7‐2011‐ICT‐FI — FInest

2.2. Users of FInest experimentation environment

We distinguish two group categories of users:

 Experimenters/testers: the actual user of the system, the person who designs and runs
experiments/tests. Experimenters possess knowledge about the T&L domain (domain
experts) and about simulation technologies. They are also experts in the functioning and
operation of the simulation environment.

 Participants: people/organizations (business users) that form part of the test or
experiment. These can be providers or consumers of services employed in the tests or
anyone in the T&L supply chain. Participants or business users specify the scenarios to
be tested as well as analyze the execution results.

2.3. Terms

The proposed technical specification of the EE enables the entire process, from test/experiment
planning and configuration, through execution, to analysis of the test execution. We introduce
below terms to be used throughout this report.

Step – A single action/task defined in a test scenario (see Table 1).

Test scenario – The ordered set of steps that compose a single test (see Table 1)

Variables – In the context of a test, these are field names that stand for specific values during
execution. Variables enable flexibility in test execution, as they enable running the same test
with different field values.

Variables binding – Replacement of variables values with the test data. This is done by the
experimenter during test execution (see Section 2.4.3).

Experiment/test – The ordered set of steps to be carried out by an experimenter during
execution. Each experiment is identified by a unique ID and version. It is also associated to a
single Transport Chain Plan (TCP) ID (see Section 3.4). An experiment may have variables to
enable multiple executions of the same experiment with different data.

Execution – The actual running of an experiment. All variables should be bound to data
providers before execution can begin (see Section 2.4.3).

Vusers – Virtual users that play human users in a specific experiment.

Vusers scripts – The ordered set of actions a Vuser performs during the execution of an
experiment. In other words, the set of instructions carried out during execution without user
intervention.

Atomic step – A smallest (inseparable) single instruction that is carried out during the execution
of a test. An atomic step may contain (a) an instruction to be manually performed by a tester; (b)
a reference to run a Vuser script; or (c) an instruction to inject data provided through a variable
into FInest test.

Execution log - A file that lists actions as occurred during execution, including all process and
system notifications. The entries in an execution log can provide insight into what happened
during execution of the test and provide an audit trail of information related to the execution. In
fact, the execution log is the input to the Reporting module in the EE which analyzes the log and
provides performance assessment of the execution (see Section 2.4.4).

Expected results – the anticipated outcome of a step in a test.

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 8 of 33

FP7‐2011‐ICT‐FI — FInest

Actual results – the real outcome of a step as result of execution.

Key Performance Indicator (KPI) – performance measurements related to T&L stored in the EE
for the sake of performance assessment and analysis. The evaluation framework specification is
in the scope of work package 2 but the KPI(s) related to the performance assessment are stored
in the EE, and can be used to assess the performance of the test executed (see Section 2.5).

Composite Key Performance Indicator (CKPI) – a KPI composed of one or more KPIs jointly
analyzed.

Report – A summary of what occurred over one or more test executions. A report may include
performance assessment of the execution based on given KPI(s).

Injected data – Data fed into the test by the backend simulator module in EE (see Figure 4).
Injected data is used whenever real data in real time cannot be obtained during the execution of
a test. In these cases, the intention is to use (real-time) historical data to simulate the processes.

Notifications – These are messages given to a user via FInest frontend during an execution of a
test. Notifications are recorded in the execution log of the test.

2.4. Experiment execution in FInest EE

As aforementioned, FInest EE enables the entire process, from test/experiment definition,
through execution, to analysis of the test execution. Figure 1 illustrates this process flow.

Figure 1 describes the process in three layers performed in parallel.

 Actor: who performs this task/who interacts with FInest EE?

 Task: what is performed?

 Output: what is the result of this task?

Although the tasks in the process are sequentially in nature, each phase can iterate with itself
and with the previous phase. For example, the configuration of a test might require several
iterations between a tester and the relevant business user, as well as many iterations of the tester
in order to achieve the set of the atomic steps to be executed. This is illustrated by the
feedback/circular arrows between the tasks.

The outputs resulting from the test configuration, executions, and analysis, are stored in the EE
along with references to each other to enable tracing.

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 9 of 33

FP7‐2011‐ICT‐FI — FInest

test
scenario

business user tester

experiment/test

execution log

tester

Execute
experiment

Create test
scenario

Configure
experiment Report

actor

task

output

business user

test
scenario

business userbusiness user testertester

experiment/testexperiment/test

execution logexecution log

testertester

Execute
experiment

Create test
scenario

Configure
experiment Report

actor

task

output

business userbusiness user

Figure 1: Experimentation process in FInest EE

2.4.1. Create test scenario

In general, time and effort should be invested in selecting appropriate scenarios for inclusion as
it will be impossible to test all possible scenarios. The creation of the five use case scenarios
selected for FInest is part of the work of WP2 and one of the outcomes of D2.4 is to provide the
test scenarios specification for these selected use cases (refer to the tight coupling between WP2
and WP4 as described in Section Error! Reference source not found. 2.5).

The business user prepares a test scenario that is a document consisting of the sequence of steps
to be manually performed by the tester. For each step a description of the test, the actor(s)
involved (role that performs the test, e.g., shipper, forwarder…), relevant data (including
variables), and expected result are given. See Table 1 for an example extracted from the "Real-
time event handling" use case (refer to deliverable D2.4)

Table 1: Example snippet of the "real‐time event handling" use case test scenario

Step Actor Description Data

(including
variables)

Expected result

1 shipper Logs in FInest platform Login data Basic booking window is
displayed

2 shipper Selects the booking to be changed Content of the
information that is
created by the system
(e.g. list of offers
received)

Booking window is
displayed

3 shipper Changes booking volume from 3-
5

Information related
to the notification

A change request is set up

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 10 of 33

FP7‐2011‐ICT‐FI — FInest

(e.g. detail of a
booking request)

4 shipper Submits booking A change request is being
sent towards the forwarder
and carrier

… … … … …

In addition to the test scenario steps, the business user might specify a KPI or set of KPIs
(CKPI) to be calculated for later analysis of the results. The aim is to assess the degree of
improvement (in terms of efficiency and effectiveness of business operations) achieved by the
new collaborations enabled by FInest. In case an assessment of test performance is required, a
set of KPI(s) is selected for the specific scenario (see 2.4.4).

2.4.2. Configure experiment

The tester/experimenter of FInest EE receives as input the test scenario and configures it in
order to make it executable, i.e. goes over each of the steps and refines it if necessary so it can
be executed as an atomic step in the EE. This step is required since business users might
describe steps in different levels of granularity (sometimes too coarse grained for the scenario to
be executable).

The definition of the execution parameters is done at the beginning of the test using a dedicated
view in FInest EE frontend (see Figure 4). Note that the designed architecture also allows for
assigning default values to data.

The output is an executable test that can be run by the tester using FInest EE, i.e. each row in it
is an atomic step. This executable test can be conceptually seen as a "test template" which can
serve as basis for new versions of the specific test or new tests (see Section 2.4.5).

The configuration phase includes for each step whether it is:

 Manual – The step is executed by the tester. It includes the table fields as described in
Table 2.

 Injected data – Simulation of a step (s) using historical data. This is done by the
selection of "injected data" in input view (see Figure 4).

 Vuser script – A pointer to the script to be run.

Table 2 shows the experiment snippet that corresponds to rows 1-2 in the test scenario of Table
1.

Table 2: Example for an experiment for the "real‐time event handling" use case test scenario

Step Actor Description Data

(including
variables)

Expected result

1 shipper Logs in FInest platform into
"Booking change application"

 Login window is displayed

2 shipper Type in the username field Var1

3 shipper Type in the password field Var2

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 11 of 33

FP7‐2011‐ICT‐FI — FInest

4 shipper Select the user role filed "shipper"

5 shipper Click the login button Shipper is logged into the
application

6 shipper Click the search OrderID button Search Order window is
displayed

7 shipper Selects the OrderID to be changed In the
OrderID field
select Var3

Details of OrderID==Var3 are
displayed

… … … … …

2.4.3. Execute experiment

The experiment defined in the configure experiment stage enables its execution by binding the
parameters specified in the experiment to specific values. For example: var1 in our example can
be bounded to "John Brown".

The tester executes the experiment by sequentially performing each of the steps specified in the
experiment, including Vuser scripts and injection of data into the execution. For each of the
steps two additional fields are incorporated: actual results and notifications.

Actual results reflect the observed output of the execution of the step.

Notifications are messages sent to FInest front end during the execution of a test. We identify
two types of notifications:

1. Messages or alerts - These are notifications sent by the BCM (Business Collaboration
Module) or EPM (Event Processing Module) modules regarding actual or expected
outcomes of the process being carried out. An example of a notification can be
notifications sent to the forwarder and carrier once a booking modification has been
requested by a shipper (refer to demonstrator 3 in FInest and D2.4 for details on the use
case), as illustrated in the snippet screenshot from demonstrator 3 in Figure 2. Messages
can sometimes being expected and therefore referred to in the expected results of the
use case, but they can sometimes be result of proactive notifications of the EPM (refer
to D6.3 regarding proactive event-driven computing).

2. Error messages displayed during the execution of a test.

Figure 2: Example of system notifications

An automated log regarding the actual execution of the test is generated by FInest EE execution
log manager (see Figure 4).

Table 3 shows an example for the execution of the experiment in Table 2.

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 12 of 33

FP7‐2011‐ICT‐FI — FInest

Table 3: Example of an experiment test after execution

Step

A
ct

or

D
es

cr
ip

ti
on

D
at

a

Expected result Actual results Notifications

1 Login window is displayed

Login window is
displayed

2

John Brown is typed

3

JBrown password is
typed

4

Shipper is selected

5 Shipper is logged into the
application

John Brown is logged
into the application

6 Search Order window is
displayed

Search order window is
displayed

7

Sa
m

e
as

 in
 T

ab
le

 2

Details of OrderID==Var3
are displayed

Order 12345 details are
not displayed

Error message
"Order 1234
cannot be
displayed"

… … … … …

2.4.4. Report

Analysis of the performance execution of the test can be done by the business user through the
reporting component (see Figure 4Figure 3). The EE enables selecting which KPIs (either
simple or composite) can be calculated out of the execution logs. In this phase, reports based on
the KPIs are generated to enable the business user to analyze the performance of the test
execution (note that this is an optional task, as described in D4.2). This phase includes two
actions:

 Set-up/select the relevant KPI(s) (as appear in the test scenario)

 Generate report(s)

Note that the business user should explicitly state whether the KPIs should also be calculated
on aborted or cancelled executions (see Section 2.4.6).

2.4.5. Re-using an existing test

A common situation is business users who want to test similar situations (collaborations) or
even the same business collaboration with different variables values. This is possible in Finest
EE by locating and uploading the relevant experiment (via the Search component, see Figure 4)
and re-configuring it either to a new experiment or to a new version of the same experiment.
This new test can then be executed.

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 13 of 33

FP7‐2011‐ICT‐FI — FInest

2.4.6. Ending an execution

In general, each execution log can have one out of three possible statuses (recorded as part of
the execution log):

 Completed: the test has been carried out and has been completed

 Aborted: At some point the test has been stopped by the EE (as a result of an "error" in
FInest test)

 Cancelled: At some point the test has been stopped by the tester

2.5. Tightly connection with work package 2 "Use case
specification"

There is a tightly connection between WP2 "Use case specification" and WP4 "Experimentation
environment", since the designed experimentation environment needs to support the execution
of the test scenarios specified in WP2. More specifically, D2.4 "Initial experimentation
specification and evaluation methodologies for selected use case scenarios" is tightly related to
D4.3 "Interim specification for transport and logistics experimentation environment" and there
are two main intersection points that relate to the two main outcomes of D2.4:

 Experimentation specification of use case scenarios – WP2 (Task 2.3), and specifically
the domain partners in this work package are accountable for the definition of the test
scenarios (five selected use cases in FInest) to be executed in phase 2.

 Evaluation methodologies for selected use case scenarios – WP2 (Task 2.4). The
evaluation framework devised in D2.4 will pave the way to the definition and
specification of the KPIs to be stored in FInest EE. Moreover, this framework will
facilitate the selection and analysis of the test performance based on the selected
KPI(s).

These two intersection points are demonstrated in Figure 3. The business users in WP2 define
the test scenarios to be executed in the experimentation environment, initializing the execution
process (represented by the solid line rectangle). During the report task, business users will
analyze the performance of the test based on the KPI(s) and assessment methodology defined in
WP2 (represented by the dotted line rectangle).

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 14 of 33

FP7‐2011‐ICT‐FI — FInest

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 15 of 33

test
scenario

business user tester

experiment/test

execution log

tester

Execute
experiment

Create test
scenario

Configure
experiment Report

actor

task

output

business user

Experimentation
specification of

use case
scenarios

Evaluation
methodologies

test
scenario

business user tester

experiment/test

execution log

tester

Execute
experiment

Create test
scenario

Configure
experiment Report

actor

task

output

business user

test
scenario

business userbusiness user testertester

experiment/testexperiment/test

execution logexecution log

testertester

Execute
experiment

Create test
scenario

Configure
experiment Report

actor

task

output

business userbusiness user

Experimentation
specification of

use case
scenarios

Evaluation
methodologies

Figure 3: Intersections points between WP2 and WP4

3. Technical specification of FInest EE

In general, the envisioned experimentation environment will operate by activating the FInest
platform and will invoke it at each test execution, utilizing FInest technologies and databases. It
consists of three interconnected major components (see Figure 4 for an initial detailed
architecture of the EE):

 FInest test – a replica of FInest platform for testing purposes in order to avoid "playing"
in FInest production environment. It is anticipated that in order to enable test executions
with real-data as well as with simulated data, the UI of FInest will be extended to
support both modes.

 FInest experimentation environment – includes all components required to run and
analyze tests executions, as well as databases for the storage of executions, execution
logs, reports, KPI(s), test data, resources, and roles and access rights.

 FInest experimentation environment front-end – The UI for the users to be able to use
the experimentation environment to create, update, execute, and report on tests.

The EE architecture follows the Model-View-Controller (MVC) paradigm characterized by:

 Model: the knowledge of the system, including the entities, statuses, and states; and the
necessary logic for creating and conducting experiments.

 View: the presentation and representations of the model. In this case the displayed
information includes experiment steps and reports.

FP7‐2011‐ICT‐FI — FInest

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 16 of 33

 Controller: the link between the user (the view) and the system (the model). The
controller receives the user’s input and updates the model state accordingly.

The EE (model) contains the components required to realize all functionality including the
storage of experiments, execution states, execution logs, reports, and data to be used during
execution.

FInest EE front end includes the following high-level views (see Figure 4):

 Access Handling: control access to the experimentation environment and EE artifacts
(experiments, execution logs, reports, etc.)

 Experiment Management: the management of experiments, including finding, creating
and updating experiments.

 Execution Management: creating and managing the execution of experiments

 Resource Management: provides basic information on available resources and allows
managing the resources in the system.

 Reports: finding, creating, editing, and viewing reports over executions.

The system (EE) interacts with the FInest Test system through a backend simulator component.
This includes injecting data into FInest test and recording events and other data processed by
FInest test so as to enable the calculation of KPIs.

We foresee that a few components of the envisioned EE may be off-the-shelf components, that
is, can be bought as specific purpose components and be incorporated into the EE for specific
purposes. Specifically, we believe that the reporting component and the script engine
component (for executing Vusers scripts), can be off-the-shelf and do not require self-
development by the FInest team. Furthermore, we expect reporting (together with KPIs)
capabilities to become a separate application from the experimentation environment and be part
of the services provided by FInest. The examination of build-versus-buy components will be
part of the implementation plan to be submitted as D4.4 at M24.

Figure 4 presents FInest EE initial architecture followed by a description of the different
modules and definition of the data types and interfaces. Members of WP4 closely worked with
members of the technical team so that the architecture proposed is in-line with the technical
specification defined for each of the technical deliverables of the project at M18. Please also
note that the technical architecture depicted in Figure 4 is defined at the model-level, using
TAM (the Technical Architecture Modeling language)2, a UML derivate, following the
convention used in the other technical work packages.

2 http://www.fmc‐modeling.org/fmc‐and‐tam

FP7‐2011‐ICT‐FI — FInest

Figure 4: FInest experimentation environment architecture

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 17 of 33

FP7‐2011‐ICT‐FI — FInest

3.1. FInest experimentation environment components

User Manager: Handles user accounts, passwords, and access. This includes features such as
user groups and access control to data, as well as users being able to assign other users
permissions.

Experiment Manager: Handles experiment lifecycle and experiment querying. This includes
creation, versioning, archiving, and search capabilities.

1) Experiment CRUD (Create, Read, Update, and Delete): provides services for
experiment lifecycle. Archiving is used instead of deletion so that traceability is never
lost.

2) Experiment Search: provides services for finding experiments according to various
search criteria.

Execution Manager: Handles the concrete executions of an experiment. This includes the
creation of new executions (including the configuration of variables), executing (or tracking the
execution of) the steps in the experiment, and logging the results.

1) Executor: Tracks the execution of the individual steps in an evaluation. This includes
the automated execution of certain steps, such as injecting data/events into the FInest
Test instance and running VUser scripts through the script execution engine. This
component also creates and updates entries in the execution log, including notifications
received from FInest front-end and error messages.

2) Script Execution Engine: executes VUser scripts.

Resource Manager: Provides an inventory of available resources. Services include the ability to
locate resources according to various search criteria.

Reporting: Generates reports based on execution logs and KPIs.

1) KPI Manager: Manages the calculation and composition of KPIs

a. KPI Composer: Used to create and manage composite KPIs

Execution Log Manager: provides logging services for an execution. This includes the logging
of the results for each step of an execution, including any received notifications during the
execution of each step. Also provides access to these logs.

Execution Data Manager: this is used to manage the access to data that is used during
execution.

1) Internal Data Provider System: Used for storing and retrieving manually configured
data providers.

2) External Data Access: Used to retrieve data from 3rd party external systems. For
example, this could be used to “replay” events from a real-world shipment. The access
to these systems is configured by the tester. Configuration could be UI or file driven.

Backend Simulator: used to simulate input data from backend systems to FInest; provides APIs
to inject data to the FInest Test system’s modules. Also reports back on events and other
processed data.

EE Storage: provides internal storage services for the experimentation environment.

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 18 of 33

FP7‐2011‐ICT‐FI — FInest

3.2. Data types definitions

The data types are given below. Note that additional methods are included for convenience.
While not mentioned for brevity, getters have associated setter methods as well.

1. Experiment (DataType)

Note that once an experiment-version has associated executions it cannot be modified, although
new versions can still be created for the experiment.

Method Notes Parameters

DefineVariable()
void Public

Used to define a new variable which
must be bound for use during
execution. The variable’s name must
be unique within the experiment.

VariableSpecification

AddStep() void
Public

Insert a new step to the experiment Step

int – where to insert

RemoveStep() void
Public

Removes a step from the experiment int – where to remove

ReplaceStep() void
Public

Replaces a step in the experiment Step

int – where is the step to be
replaced

GetSteps()
Step[0..*] Public

Gets the steps for this experiment

GetVariables()
VariableSpecificati
on [0..*]

Public

Gets the variables defined for the
experiment.

GetVersion() int
Public

Gets the version number for the
experiment.

GetExperimentId()
GUID Public

Gets the experiment id; this is common
to all the different versions of an
experiment.

GetId() GUID

Public

Gets the global unique ID for this
experiment and version.

GenerateCopy()
Experiment Public

Creates a copy of this experiment. This
is a deep copy – changes to this
experiment should not affect the copy
and vice-versa. The copy is not in
persistent storage.

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 19 of 33

FP7‐2011‐ICT‐FI — FInest

2. VariableSpecification (DataType)

A VariableSpecification instance gives a type of data that needs to be provided when creating an
Execution instance for an Experiment.

Method Notes Parameters

GetType()
DataType Public

Returns the data type. May be int,
String, long, HTML, TCP, Event,
ContractStatus, etc.

GetCardinality()
DataCardinality
Public

Returns the necessary cardinality.
Cardinalities are characterized by a
minimum value (which is at least 0),
and a maximum value (which is at
least 1), which may be unbounded.
Examples are: 1..1, 0..1, 2..*, 0..5, 1..*

GetDefaultDataPro
vider
DataProvider[0..1]
Public

Returns the default data provider for
binding.

GetDescription()
String Public

Gets the human-readable description of
the variable and what it is used for in
the experiment.

GetName() String
public

Gets the human-readable name of the
variable.

3. Step (DataType)

Member Notes Type

 Actor Sets the actor to perform the action.
This can be a user, a role or a system.

String

VUserScript A VUser Script to be used when
executing

String – the script to be
executed

DataInjectionVariable Stores a variable name, whose
DataType should be injectable into
FINest (such as Transport Execution
Data, Event, Booking). When
executing, the bound data provider will
provide the data to be injected. Data is
injected at the beginning of execution

String

NewTCPRequired Indicates whether a new TCP is
required.

The execution of such a step involves

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 20 of 33

FP7‐2011‐ICT‐FI — FInest

the user clicking a link to access the
FINest Test UI where the new
shipment details are entered (see the
sequence diagram). TCPs created in
this manner are associated with the
Execution instance.

DataDescription Sets the description of the data to be
used during the step

String

Description Sets the description of the action to be
taken during the step

String

ExpectedResult Sets the expected result of the
execution (a human-readable string)

String

4. Execution (DataType)

Method Notes Parameters

GetExperiment()
Experiment Public

Returns the experiment instance this
execution is associated with.

AssociateTCP() Associates a TransportChainPlan Id
with this execution.

TransportChainPlanId – the
identifier of a TCP created as
part of this experiment
execution

GetAssociatedTCPI
ds() void Public

Gets the TransportChainPlan
identifiers associated with the
execution

BindVariable()
void Public

Binds a variable name with a data
provider

String – variable name

DataProviderId

GetVariableBindings
Map<String,DataProv
iderId> Public

Returns a mapping from variable
names to their bound data providers

GetCursor() int

Public

Returns the index of the next step not
completely executed (from 0 to total
number of steps)

IncrementCursor()
void Public

Increases the cursor by 1

GetId() GUID

Public

Gets the global unique ID for the
execution

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 21 of 33

FP7‐2011‐ICT‐FI — FInest

GetCreator()
UserId

Public

Returns the user id of the creator of
this execution

GetStatus()
ExecutionStatus
Public

Returns the status of the execution, one
of: Initializing, In Progress, Complete,
Aborted, Cancelled

5. Resource (DataType)

Member Notes Type

Id Gets the resource’s id GUID

Description Gets a human-readable description for
the resource

String

Name Gets the human-readable name for the
resource

String

6. ExecutionLogEntry (DataType)

Member Notes Type

Actor

Returns the actor (user/ source /
system) which performed the action

String

Execution Returns the execution which was
logged

Execution

StepNumber Returns the step number which was
executed for this entry

int

Timestamp Returns a time-stamp (time and date)
of when this entry was created

Timestamp

ActualResult Gets the actual result, for skipped steps
the text will read Skipped

String

Notifications Returns notifications for associated
TCPs which were received while
executing this step. Notifications
conform to FInest formats

Notification[0..*]

DateTypes Returns the data types of data received
from the back-end simulator during
execution. The indexes here must

DataType[0..*]

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 22 of 33

FP7‐2011‐ICT‐FI — FInest

match up with those of DataReceived

DataReceived Returns the data received from the
back-end simulator during execution,
which refer to an associated TCP.
Indexes must match those for
DataTypes. The data is in the
appropriate standard FInest format
(e.g. XML).

String[0..*]

7. Report (DataType)

Method Notes Parameters

GetName() String
Public

Returns the name of the report

GetExperiments()
Experiment[1..*]
Public

Returns the experiments this report
covers. This should be gathered from
the Execution instances, there should
be no matching setter.

GetExecutions()
Execution[1..*]
Public

Returns the executions over which this
report was created

AddKPICalculator()
void Public

Adds another KPI KPICalculator

RemoveKPICalculato
r() void Public

Removes the KPI with the given name String

CalculateKPIValues()
void Public

Calculates KPI value by iterating over
the covered executions and passing
them to the KPICalculators

GetKPIValues()

Map<String,
Double> Public

Returns a mapping from KPI names to
values calculated over the executions.
There should be no matching setter.

GetDescription()
String
Public

Returns the description of the report

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 23 of 33

FP7‐2011‐ICT‐FI — FInest

3.3. Interfaces definitions

3.3.1. Non-component interfaces

1. DataProvider

Instances are retrieved by the Executor from the Execution Data Management subsystem and
are used for variable binding purposes. They can be used to retrieve constants, dynamic values,
and data for injection into FInest Test. There should be implementations for each DataType for
retrieving constant data. This allows execution setup to use constant values. Implementations
should also be available for common storage repositories, such as Relational Data Base
Management Systems (RDBMS) systems.

Method Notes Parameters

GetDataType()
DataType Public

Returns the type of data provided.

GetCardinality()
DataCardinality
Public

Gets the cardinality of the data that can
be provided. For static data the
minimum and maximum should be
equal to the exact number of data
entities available.

GetId() GUID

Public

Gets the identifier of the provider. The
identifier should be unique within the
providing system.

GetSystemId()
GUID

Public

Returns the unique identifier for the
providing system.

GetDataIterator()
Iterator Public

Returns an Iterator which gives access
to the data. The iterator is only
required to support moving forward
through the data. It may optionally
provide ability to jump to an index,
move backwards, or return the amount
of data.

GetName() String
Public

Returns the human-readable name of a
data provider. May return null (a data
provider is not required to have a
name).

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 24 of 33

FP7‐2011‐ICT‐FI — FInest

2. KPICalculator

KPICalculator is used to calculate a KPI. Instances are created in the KPI Manager component
and are used by the Reporting component.

Method Notes Parameters

Initialize() void
Public

Initialize the calculation

Update() void
Public

Updates the internal state with
information related to the given
execution. This would involve
calculating over notifications in the
relevant logs.

Execution

CompleteCalculatio
ns() void Public

Performs any final calculations
necessary

GetValue() double
Public

Returns the calculated KPI value

GetName() String
Public

Returns the name of the KPI

Additional KPIs can be composed from provided KPI functions and the base set of KPIs.
Functions provided would include Sum, Average, Difference, Standard Deviation, Minimum,
and Maximum. Each function would receive additional KPIs as inputs.

KPICalculator instances are created through a KPICalculatorFactory.

3. KPICalculatorFactory

A named factory of KPICalculator instances. Base KPIs will have preinstalled
KPICalculatorFactory implementations. The KPI Composer creates new instances by
composing KPIs. Used by KPIManager to create new KPICalculator instances for the
ReportManager.

Method Notes Parameters

GetName() String
Public

The name of the calculation performed

Create()
KPICalculator
Public

Creates a new KPICalculator instance

ToStringRepresenta
tion() String Public

Returns the string representation; this
representation can be used as input to
the KPIComposer

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 25 of 33

FP7‐2011‐ICT‐FI — FInest

3.3.2. Component interfaces

1. Executor

Method Notes Parameters

ExecuteStep() void
Public

Executes the current step, and logs
output. Note for manual steps this
doesn’t do anything.

For steps with data injectors it will
access the DataProvider instance
(through the bound injection variable),
retrieve each data object one at a time,
injecting each through the Backend
Simulator into the FInest Test system
before proceeding to the next.

If the given execution is not properly
initialized (e.g. it has unbound
variables) an
ExecutionNotReadyException will be
thrown. If errors occur during
automated steps, the execution is
aborted.

Execution

LogResult() void
Public

Writes a new entry to the log for the
current step.

Execution

String – the text to be logged

CompleteStep()
void Public

Completes the current step and
progresses to the next

Execution

SkipStep() void
Public

Skips the current step. Logs a skip
entry to the log

Execution

CancelExecution()
void Public

Stops and cancels the given execution.
If there is a script running for this
Execution, then it will kill it.

Execution

2. ScriptExecutionEngine

Method Notes Parameters

ExecuteScript()
ScriptExecutionId
Public

Executes the given script. The
scripting language will be dependent
on the engine selected in the
implementation phase. The engine
should support data-binding to
variables. Returns an identifier for the
script execution

String – the VUser script

Map<Name, DataProvider> -
the variable bindings

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 26 of 33

FP7‐2011‐ICT‐FI — FInest

WaitForCompletio
n() boolean Public

Waits for the script execution to
complete up to a given timeout.
Returns true if the execution has
completed, else false

ScriptExecutionId

int – timeout in seconds

KillScript() void
Public

Will attempt the orderly stopping of
the script. If not completed by the
given timeout will forcibly stop the
script’s execution

ScriptExecutionId

int – timeout in seconds

3. DataProviderSystem

Method Notes Parameters

GetProviders()
DataProvider[0..*]
Public

Returns the data providers that are
available in this system

GetProviders()

DataProvider[0..*]

Public

Gets the providers matching the
desired DataType and DataCardinality.

DataType

DataCardinality

GetProvider()
DataProvider
Public

Gets a data provider by id GUID

4. ExternalDataAccess

As part of system setup, a configuration stage is necessary where-in DataProviderSystem
instances would be configured. An implementation could for example be configured to connect
to an RDBMS and retrieve data from specific tables.

Method Notes Parameters

AddSystem() void
Public

Adds a data provider system DataProviderSystem

GetSystem()
DataProviderSyste
m Public

Gets a data provider system by id GUID

GetSystems() [0..*]
Public

Returns the data provider systems

GetArchivedSyste
ms() [0..*] Public

Returns the archived data provider
systems

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 27 of 33

FP7‐2011‐ICT‐FI — FInest

ArchiveSystem()
void Public

Archives the data provider system GUID

UnarchiveSystem()
void Public

Unarchives the data provider system GUID

GetProvider()
DataProvider
Public

Equivalent to
GetSystem(sytemId).GetProvider(prov
iderId)

DataProviderId – this is a
pair of GUIDs, one for
systemId and one for
providerId

5. InternalDataProviderSystem

This is also a DataProviderSystem but has functionality for static data configuration.

Method Notes Parameters

CreateProvider()
DataProvider
Public

Creates a new data provider which
provides the given data.

DataType – the type of data
provided by the new
DataProvider

Object [0..n] – the data
entities to be returned by the
new DataProvider

ArchiveProvider()
void Public

Archives the data provider GUID

UnarchiveProvider(
) void Public

Unarchives the data provider GUID

GetArchivedProvid
ers()

DataProvider[0..n]
Public

Gets the archived data providers.

6. BackEndSimulatorService

Method Notes Parameters

InjectData() void
Public

Injects data to the appropriate FInest
module.

DataType – the type of data.
The modules which need this
data should be uniquely
determinable from this

String[1..*] – a serialized
representation of each data
entity in an appropriate format
for consumption by the FInest

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 28 of 33

FP7‐2011‐ICT‐FI — FInest

modules (e.g XML)

7. ExecutionManagerService

Method Notes Parameters

GetActiveExecutio
ns()
Execution[0..*]
Public

Returns the active (incomplete)
executions for the given user id

UserId

GetExecutions()

Execution[0..*]
Public

Returns the executions for a given
experiment

Experiment

StartNewExecution
()

Execution Public

Creates a new execution for a given
experiment. The new execution has no
variables bound.

Experiment

CopyExecution()
Execution Public

Creates a new execution from a given
execution. The new execution will not
have any records in the ExecutionLog.
Variables are bound.

Execution

AssociateTCP()
void Public

Associates the given TCP id to an
execution.

Execution

TransportChainPlan Id

Since the system logs all notifications dealing with TransportChainPlans (TCPs) and associates
them to a specific execution, the creation of TCPs is a special action in the experimentation
environment. When creating a TCP, the user must be directed through a UI which enables the
experimentation environment to capture the TCP id and associate it with the execution.

8. ExperimentCRUDService

Method Notes Parameters

CreateExperiment()
void Public

Creates a new experiment in persistent
storage

Experiment

UpdateExperiment()

void Public

Updates an experiment in persistent
storage

Experiment

ReadExperiment()
Experiment Public

Gets an experiment by id GUID – the id corresponding
to an instance (experiment id
together with version id)

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 29 of 33

FP7‐2011‐ICT‐FI — FInest

ArchiveExperiment
() void Public

Archives the experiment Experiment

UnarchiveExperim
ent() void Public

Unarchives the experiment Experiment

9. ExperimentSearchService

Method Notes Parameters

FindExperiments()
Experiment[0..*]
Public

Finds experiments according to a
query. The following information
should be searchable in the query
language:

 Description

 Creator

 Full text (including steps
and variables)

 Variable Descriptions

 Archived Status

Only Experiments the user has access
to will be returned.

String

10. ResourceManager

Method Notes Parameters

CreateResource()
void Public

Creates a new resource in persistent
storage

Resource

GetResources()

Resource[0..*]
Public

Returns the resources available

UpdateResource()
void Public

Updates a resource in persistent
storage

Resource

ArchiveResource()
void Public

Archives the resource Resource

UnarchiveResource
() void Public

Unarchives the resource resource

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 30 of 33

FP7‐2011‐ICT‐FI — FInest

FindResources()
Resource[0..*]
Public

Returns resources whose name and/or
description match the query string
given. Results are returned such that
better matching results appear first.

String

11. ExecutionLogManager

Method Notes Parameters

LogEntry() void
Public

Creates a new entry in the log. ExecutionLogEntry

GetEntries()

ExecutionLogEntry
[0..*] Public

Returns the entries for an execution Execution

12. KPIComposer

Method Notes Parameters

CreateCompositeK
PI()
KPICalculatorFacto
ry Public

Creates a KPICalculatorFactory based
on functions and base KPIs, given a
string representation.

String – KPI name

String – KPI composition
string

13. KPIManager

Method Notes Parameters

GetBaseKPINames()
String[0..*] Public

Returns the base KPI names available
in the system

GetKPINames()

String[0..*] Public

Returns the names of all KPIs

RegisterNewKPI()
void Public

Uses the KPIComposer to create a new
KPICalculatorFactory and register it
with the given (unique) KPI name

String – KPI name

String – KPI composition
string

ArchiveKPI() void
Public

Archives a composite KPI String – name

UnarchiveKPI() Unarchives a composite KPI String – name

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 31 of 33

FP7‐2011‐ICT‐FI — FInest

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 32 of 33

void Public

NewKPICalculator()
KPICalculator Public

Creates a new KPICalculator instance
for the given name

String

14. ReportManager

Method Notes Parameters

CreateReport() void
Public

Stores a new report Report

GetReports()
Report[0..*] Public

Retrieves reports covering the given
experiment

Experiment

GetReports()

Report[0..*] Public

Retrieves reports covering the given
execution

Execution

FindReports()
Report[0..*] public

Searches by name, description and
note to find reports. Results should be
returned with better match results first.

String – query

15. UserManager

The user manager will expose the standard FInest user and authorization management methods
for controlling access to Experiments, DataProviderSystems, Executions and Reports. By
default, access to the individual experiment is used to control who can access the resulting
executions and related reports. Optionally, these may be overridden to provide more fine-
grained control.

3.4. Association of a TCP ID to a test

FInest aims at enabling new transport and logistic business collaborations based on future
internet technologies. FInest platform is composed of four core modules to facilitate these new
business collaborations (Refer to D3.2 "Conceptual Design of Domain-Specific FI Platform for
Transport and Logistics"3): Business Collaboration Module (BCM), the Event Processing
Module (EPM), the E-Contracting Module (ECM), and the Transport Planning Module (TPM).

The overall logistic process is described by the TCP which is the output of the TPM and serves
as input for the BCM and EPM for the actual execution of the process. For cases in which we
simulate the process, i.e. inject data and events into FInest EE, we need a mechanism to set-up a
new TCP and associate it to a new test. This set-up scenario is detailed in Figure 5. The tester
requests the initialization of a new TCP through FInest Test UI. The TPM, which simulates the
set-up of a new transport plan, returns its ID back to the tester in order to carry out the test
execution.

3 Available at http://www.fi‐ppp.eu/

FP7‐2011‐ICT‐FI — FInest

Tester
Execution

Management
FInest Test UI FInest Test TPM

Click Start a new TCP

Tester fails out
shipment details

Click Submit New Shipment

ExecutionManager

CreateShipment(Details,
ExecutionId)

CreateShipment(Details,
ExecutionId)

NotifyTCPCreated(TCP-Id, ExecutionId)

Execution

AssociateTCP(TCP-id)

Open New Window,
to CreateTCP(ExecutionId)

Figure 5: Association of a TCP ID to a test

4. Summary and next steps

Deliverable D4.3 "Interim specification for transport and logistics experimentation environment'
is a straightforward continuation of D4.2 "Requirements and design of transport and logistics
experimentation environment" and provides the first technical specification for the conceptual
design given in D4.2. The proposed architecture meets all the requirements specified in D4.2
and enables the planning, execution, and analysis of FInest use cases in phase 2 and allows for
large trials in phase 3.

The proposed EE enables execution of tests using physical sites as well as real data, and the
injection of events and data into the system in cases in which real-time data cannot be accessed.

Next steps include a refinement of the proposed architecture based on developments in the
project along with an implementation plan for phase 2 of the project.

© D4.3 Interim specification for transport and logistics experimentation environment V1.0 Page 33 of 33

	Abstract
	Document History
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	1. Introduction
	2. FInest experimentation environment overview
	2.1. What is the main goal of the experimentation environment?
	2.2. Users of FInest experimentation environment
	2.3. Terms
	2.4. Experiment execution in FInest EE
	2.4.1. Create test scenario
	2.4.2. Configure experiment
	2.4.3. Execute experiment
	2.4.4. Report
	2.4.5. Re-using an existing test
	2.4.6. Ending an execution

	2.5. Tightly connection with work package 2 "Use case specification"

	3. Technical specification of FInest EE
	3.1. FInest experimentation environment components
	3.2. Data types definitions
	3.3. Interfaces definitions
	3.3.1. Non-component interfaces
	3.3.2. Component interfaces

	3.4. Association of a TCP ID to a test

	4. Summary and next steps

