

The research leading to these results has received funding from the European Community's Seventh
Framework Programme [FP7/2007-2013] under grant agreement no. 285598

FInest – Future Internet enabled optimisation

of transport and logistics networks

D6.5

Final technical specification and phase 2 implementation

plan for the event processing component

Project Acronym FInest

Project Title Future Internet enabled optimisation of transport and logistics

networks

Project Number 285598

Workpackage #WP6 Proactive event driven monitoring

Lead Beneficiary IBM

Editor Fabiana Fournier IBM

Contributors Sarit Arcushin IBM

 Guy Sharon IBM

Reviewers Rod Franklin KN

 Clarissa Marquezan UDE

Dissemination Level Public

Contractual Delivery Date 30/3/2013

Actual Delivery Date 30/3/2013

Version V1.0

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 2 of 25

Abstract

This report presents the fifth and last deliverable of work package 6 “Proactive Event Driven

Monitoring” accountable for the definition and implementation of the event processing module

in FInest. It describes the final technical specification of the Event Processing Module in FInest

along with the implementation plan of this module in phase 2 of the FI PPP Programme.

The event processing module will be one of the two core modules in the envisioned cSpace

follow up project platform. This fact stresses the importance and the generic nature of the event

processing module, positioning it at the heart of the envisioned cSpace platform.

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 3 of 25

Document History

Version Date Comments

V0.1 20/11/12 First draft

V0.2 20/1/13 Updates after project technical meetings

V0.3 15/2/13 Updates after the technical face-to-face meeting in Essen

V0.4 1/3/13 Updates after project face-to-face meeting in Hamburg

V0.5 15/3/13 Updates after review

V1.0 30/3/13 Submitted version

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 4 of 25

Table of Contents

Abstract ... 2

Document History ... 3

Table of Contents .. 4

List of Tables .. 5

List of Figures .. 5

Acronyms ... 6

1. Introduction .. 7

2. FInest EPM architecture overview .. 8

2.1. Event types and attributes .. 8

2.1.1. Proactive attributes ... 9

2.2. Interfaces ... 9

2.2.1. Input and output adapters .. 10

2.3. Definition of FInest complex event processing application .. 12

2.4. FInest EPM instantiation ... 12

3. FInest EPM technical specification .. 13

3.1. EPM high level architecture .. 13

3.2. EPM complex event processing run-time technical specification............................... 14

3.3. EPM interfaces with other components ... 15

3.4. FInest EPM with FI-WARE GEs ... 17

3.5. Interfaces data types and definitions .. 18

4. Phase 2 implementation plan of the event processing module ... 20

4.1. cSpace B2B Collaboration module (Task 240) ... 20

4.2. Real-time exception detection and handling baseline application 21

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 5 of 25

4.3. EPM phase 2 implementation plan Gantt chart .. 22

4.3.1. List of relevant project milestones .. 22

4.3.2. List of Planned deliverables ... 23

4.3.3. Gantt chart .. 24

5. Summary ... 25

List of Tables

Table 1: Relation between D6.3 and D6.5 EPM specification sections ... 7

Table 2: Methods definitions by interfaces .. 19

Table 3: Relevant cSpace project milestones .. 23

List of Figures

Figure 1: EPM interfaces ... 10

Figure 2: EPM high level architecture ... 14

Figure 3: EPM complex event processing run-time architecture .. 14

Figure 4: Flow of events into, within, and out of the complex event processing engine 15

Figure 5: EPM interactions with other components ... 16

Figure 6: CEP engine set-up ... 16

Figure 7: FInest EPM with FI-WARE GEs .. 17

Figure 8: Interfaces and data types ... 18

Figure 9: EPM interfaces and methods ... 18

Figure 10: WP200: cSpace development (source: cSpace proposal) .. 21

Figure 11: EPM phase 2 implementation plan Gantt chart ... 24

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 6 of 25

Acronyms

Acronym Explanation

BCM Business Collaboration Module

CEP Complex Event Processing

EPA Event Processing Agent

EPM Event Processing Module

EPN Event Processing Network

GE Generic Enabler

FInest Future Internet enabled optimisation of transport and logistics networks

JMS Java Message Service

JSON JavaScript Object Notation

IoT Internet of Things

TCP Transport Chain Plan

TEP Transport Execution Plan

TPM Transport Planning Module

WP Work Package

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 7 of 25

1. Introduction

The Event Processing Module (EPM) is one of the four core technical modules in the FInest

(Future Internet enabled optimisation of transport and logistics networks) project. Its role is to

collect events from various sources and perform complex event processing on them in order to

detect situations of interest; that is, of relevant meaning to the consumer of the event enabling

them to react or make use of the event appropriately. In FInest, these detected situations (aka

derived events) are notified to the Business Collaboration Module (BCM), or to the frontend of

FInest, so appropriate actions can be taken, e.g., triggering re-planning of the transport plan.

This report is comprised of two interrelated parts. The first part is the refinement of the EPM

specification delivered in Month 18 of the project, including its interactions with other core

modules of FInest, and the potential use of FI-WARE Generic Enablers (GEs). The second part

is a plan for implementation of the EPM in phase 2 of the FI PPP Programme. The FInest follow

up project, cSpace (Future Internet Business Collaboration Networks in Agri-Food, Transport

and Logistics), will leverage the work achieved in FInest and extend the FInest platform to the

proposed cSpace platform. In fact, the event processing module will become one of the key core

modules on which the cSpace platform will rely on. More precisely, the EPM will be reflected

in two subtasks in the follow up project: The event management component of the real-time

B2B collaboration module (Subtask 242) and the "Real-time exception detection and handling"

baseline application (Subtask 451).

With regards to the first part of this report, i.e., refinement of the EPM specification, it should

be noted that the specification presented in D6.3 "Initial technical specification of event

processing component"1 has been revised and validated through the prototype implementation

of the FISH use case (refer to D6.4 "Prototypical implementation of event processing

component" to be submitted at M24 of the project) and was found both correct and valid. As a

result, the authors haven't updated the EPM specification presented in D6.3, and included the

main parts in this document, for the sake of completeness. For background on event processing

in general, and proactive event driven computing in particular, as well as the methodology

applied, refer to D6.31. Table 1 shows the relationships between D6.3 and D6.5 sections to assist

the reader.

Table 1: Relation between D6.3 and D6.5 EPM specification sections

Section in D6.3 Section in D6.5

2. Background on event processing Omitted

3. Methodology Omitted

4. FInest EPM architecture overview Section 2 - Slightly modified to reflect the

actual implementation adopted

5. FInest EPM technical specification Section 3 - Copied

1 Available at http://www.finest-ppp.eu/

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 8 of 25

Appendix A - Event processing network for

the FISH use case

Refined and implemented in FInest EPM

prototype (refer to D6.4 "Prototypical

implementation of the event processing

component" to be submitted in M24).

Omitted in this document.

This document is organized as follows: Section 1 introduces the report scope and main goals.

Section 2 provides the EPM architecture overview. Section 3 presents the EPM technical

specification. Section 4 details the phase 2 implementation plan of the event processing module.

The report concludes with a brief summary.

2. FInest EPM architecture overview

The event processing module in FInest comprises a run-time engine, event producers, and event

consumers. Specifically, the CEP (Complex Event processing) engine of FInest includes an

integrated run-time platform to develop, deploy, and maintain reactive and proactive

applications using a single programming model.

This section gives an overview of the FInest EPM architecture with relation to the CEP GE

offered by FI-WARE, including event types and interfaces definitions, and descriptions of the

EPM application and instantiation. It is important to note that in essence FInest EPM extends

the CEP GE provided by FI-WARE by adding proactive capabilities. Therefore, the “reactive”

parts as well as the interfaces described in this section are actually the ones provided by the CEP

GE and customized to FInest requirements. We intentionally conserved the same section

structure of sections 2 and 3 in this report to its counterparts 4 and 5 in D6.3, so the reader of

D6.3 could simply skip sections 2 and 3 in the present document.

2.1. Event types and attributes

Events enter the CEP engine during run-time. They carry information about things that happen

externally to the engine (raw events) or as a result of processing in the engine (derived events).

An event is an object of an event type and its attributes are defined based on the event type.

Events are actual instances of the event types and have specific values. For example, the event

"today at 10 PM a customer named John Doe booked a new order" is an instance of the Order

event type.

We distinguish between two types of event: raw events and derived events.

1. Raw event: A raw event is an event that is introduced into an event processing system

by an event producer. The definition of a raw event relates only to its source and not to

its structure; a raw event may or may not be composed of other events.

2. Derived event: A derived event is an event that is generated as a result of event

processing that takes place inside an event processing system. When a derived event is

emitted outside the event processing system and consumed by a consumer, it is called a

detected situation.

Every event instance has a set of built-in attributes (metadata). The EPM employs the following

attributes in the event type's metadata:

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 9 of 25

 OccurenceTime – a timestamp attribute, which we expect the event source to fill in as

the occurrence time of the event. If left empty, this equals the detectionTime attribute

value.

 DetectionTime – a timestamp attribute that records the time the CEP engine detected the

event. The time is measured in milliseconds, specifying the time difference between the

current machine time at the moment of event detection and midnight, January 1, 1970

UTC.

 Duration – a timestamp attribute that stores the time duration of the event in

milliseconds in case the event occurs within a time interval.

 EventId – a unique string identification of the event, which can be set by the event

source to match the asynchronous output for the event.

 EventSource – holds the source of the event (usually the name of event producer).

The above built-in attributes can be used in an expression in the same manner as user-defined

attributes. User defined attributes can be added to the event class by defining their types. If the

attribute is an array, its dimension should be specified.

When one of the event processing agents detects a situation, it can create one or more derived

event instances. These event instances have the same characteristics as an input event; they have

both user-defined (event payload) and built-in (event header) attributes. When derived events

are emitted to consumers they are called detected situations.

2.1.1. Proactive attributes

Future events in the FInest CEP engine are expressed by setting the event a future occurrence

time with an optional distribution. Its occurrence certainty can be expressed using the certainty

attribute. The following attributes are added to the event type built-in attributes:

 Certainty – a built-in double attribute that stores the certainty of this event. An event

has a default certainty value equal to 1, while it can have any value between 0-1.

 Cost – the cost of this future event occurrence. The cost is negative if this is an

opportunity. This attribute is used by the proactive algorithm to decide on mitigation

actions to prevent the occurrence of a predicted event.

 ExpirationTime - the time until which the cost and certainty parameters are valid, and

until which an activation of proactive action is considered by the proactive algorithm

(beyond this time there is no point in changing any course of action).

2.2. Interfaces

The CEP runtime engine has three main interfaces with its environment as depicted in Figure 1.

1. Input adapters for getting incoming events

2. Output adapters for sending derived events

3. CEP application definition (build time)

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 10 of 25

The application definitions, i.e. the EPN (Event Processing Network), are written by the

application developer during the build-time. The definitions output, in JSON (JavaScript Object

Notation) format, is sent to the CEP run-time engine. At run-time, the CEP receives incoming

events through the input adapters, it processes these incoming events according to the

definitions, and sends derived events through the output adapters.

Custom

DB

REST

Files

JMS

Custom

DB

REST

Files

JMS

Input Adapters

Custom

DB

REST

Files

JMS

Custom

DB

REST

Files

JMS

Output Adapters

CEP Run time

CEP Build-time

Figure 1: EPM interfaces

2.2.1. Input and output adapters

The definitions of the producers and consumers are specified during the application build-time

and are translated into input and output adapters during execution time. The physical entities

representing the logical entities of producers and consumers in the CEP are adapter instances.

For each producer an input adapter is defined, which defines how to pull the data from the

source resource and how to format the data into the CEP's object format before delivering it to

the run-time engine. The adapter is environment-agnostic, but uses the environment-specific

connector object, injected into the adapter during its creation, to connect to the CEP runtime.

The consumers and their respective output adapters operate in a push mode – each time an event

is published by the runtime it is pushed through environment-specific server connectors to the

appropriate consumers, represented by their output adapters, which publish the event in the

appropriate format to the designated resource.

In FInest, the sources of events can be backend systems (such as AIS or booking systems) or

external sensors (e.g., RFID tags) or events originated in FInest during execution and

propagated to the CEP module by the BCM. Consumers in FInest are the BCM module (e.g.

notification regarding change in shipment status) or the FInest frontend for proactive

notifications. The set of rules applicable to the specific TCP (Transport Chain Plan) along with

corresponding parameters are passed to the CEP engine during execution by the BCM, which in

turn gets its information from the TPM (Transport Plan Module).

2.2.1.1. EPM RESTful API

As mentioned previously, the CEP has three main interfaces: one for getting input events using

input adapters, a second for sending output events using output adapters, and a third for getting

application specific definitions. In the case of a RESTful API for the first two interfaces, the

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 11 of 25

CEP engine can activate RESTful services of external applications for receiving input events

and for sending output events using its input and output adapters.

The EPM module will build upon the FI-WARE CEP GE2. The run-time engine supports a

RESTful, resource-oriented API accessed via HTTP that uses either XML-based, JSON-based,

or tag-delimited format representations for getting input events and for sending derived events.

The CEP engine uses a RESTful client input adapter that is capable of accessing a RESTful web

service and pulling input events using its GET method and a RESTful client output adapter,

which is capable of accessing a RESTful web service and pushing output events using its PUT

method.

The CEP GE uses a REST input adapter that activates a REST service as a client, allowing the

CEP GE REST input adapter to access the REST web service declared by the event producer

and pull events using the GET method. The CEP GE uses a REST output adapter that activates a

REST service as a client, allowing the CEP GE REST output adapter to access the REST web

service declared by the event consumer and push events using the PUT method.

In terms of representation format, the CEP REST adapter supports XML-based, JSON-based or

tag-delimited formats for the received input event. The format is specified in the CEP producer

definition (for pulling input events from it) and in the CEP consumer definition (for pushing

output events to it) and is passed as part of the requests using the Content-Type header.

Operations

Getting Events API

The CEP activates a REST API for getting incoming events in a pull mode. The CEP plays as a

REST client in this API:

Verb URI example Description

GET /application-name/producer Retrieve all available incoming events

/application-name/producer

Retrieve all available incoming events from a producer.

In tag-delimited format:

GET /application-name/producer

Accept: text/plain

Sample result:

Name=ShipPosition;ShipID=RTX33;Long=46;Lat=55;Speed=4.0;Time=1333033200;

Name=ShipPosition;ShipID=JF166;Long=47;Lat=55;Speed=2.0;Time=1333033260;

Sending Events API

The CEP activates a REST API for sending output events (in a push mode). The CEP plays as a

REST client in this API:

2 http://forge.fi-

ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Data.CEP

http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Data.CEP
http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Data.CEP

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 12 of 25

Verb URI example Description

PUT /application-name/consumer Send an output event to a consumer

/application-name/consumer

Send an output event to a consumer

In tag-delimited format:

PUT /application-name/consumer

Content-type:text/plain

Name=ShipStopped;ShipID=RTX33;Long=46;Lat=55;Speed=4.0;Time=1333033200;

2.3. Definition of FInest complex event processing application

Currently in FInest, the definitions JSON file is created manually and fed into the CEP run-time

engine.

The building blocks of a CEP application are:

 Event type – the events that are expected to be received as input or to be sent as output.

An event type definition includes the event name and a list of its attributes.

 Producers – the event sources and the way CEP gets events from those sources.

 Consumers – the event consumers and the way they get derived events from the CEP.

 Temporal contexts – time window contexts in which event processing agents are active.

 Segmentation contexts – semantic contexts that are used to group several events to be

used by the EPAs (Event Processing Agents).

 Composite contexts – grouping together several different contexts.

 Event processing agents – patterns of incoming events in specific context that detect

situations and generate derived events.

The JSON file that is created at build-time contains all EPN definitions, including definitions

for event types, EPAs, PRAs, contexts, producers, and consumers. At execution, the run-time

accesses the metadata file, loads and parses all the definitions, creates a thread per each input

and output adapter, and starts listening for events incoming from the input adapters (producers)

and forwards events to output adapters (consumers).

2.4. FInest EPM instantiation

In FInest a set of rules is defined and provided to the run-time engine during the build-time. At

execution time, the instantiation of the relevant EPAs is done by specifying for each Transport

Execution Plan (TEP) in a single TCP (Transport Chain Plan) the set of rules from the rules

definition that apply to the specific TEPs along with the corresponding parameter values. This

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 13 of 25

set of rules is transferred to the EPM by the BCM, which in turn gets its information from the

TPM. The rules activator component in the EPM is responsible for selection and activation of

rules relevant for each TEP based on the information received from BCM.

Upon the completion of each TEP within a TCP, the temporal window (temporal context)

associated with this TEP is terminated, which causes termination of all EPA instances

associated with this context, i.e. all EPA instances related to this TEP. In FInest, a set of rules

for the FISH use case has been specified and it is described in detail in D6.4.

3. FInest EPM technical specification

In this section of the report we present the proposed technical architecture of the FInest event

processing module that comprises the capabilities discussed so far. We start with a high level

overview of the EPM module, followed by a more detailed architecture. Conceptually, the

FInest CEP engine can be implemented based on the FI-WARE CEP GE, except for the

proactive capabilities that differentiate the FInest CEP from currently available complex events

engines.

3.1. EPM high level architecture

The EPM high level architecture is depicted in Figure 2. The CEP runtime engine is the heart of

the module – it receives events from producers, monitors and checks them for predefined

patterns, and produces derived events. When the latter are emitted outside the module to

consumers, they are called detected situations. The entire set of rules to monitor is part of the

engine set up and they are defined in advance.

Producers: According to the CEP architecture, producers can produce multiple event types and

a single event type can be produced by multiple sources. In FInest, we have identified three

sources for events: IoT (Internet of Things), backend systems, and the BCM.

Consumers: Detected situations are consumed by the BCM, which in turn sends notifications to

users via the FInest frontend. Proactive notifications are directly sent to the FInest frontend

(consumer) by the EPM since these events don't actually alter the execution of the BCM, but

serve as meaningful notifications for a user so they can make better decisions (e.g., trigger

replanning).

Events: Raw events are introduced into the module by the producers, while derived events are

generated as a result of event processing that takes place inside the EPM. Derived events can

either be emitted to consumers (detected situations) or can be input for further processing inside

the CEP module by other event processing agents. Detected situations can be sent as

notifications to users regarding meaningful situations they have subscribed to.

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 14 of 25

<<Finest>>

Event Processing Module

Detected situations

(derived events)Events

Derived events

Producer
Producer

Producer

Consumer
Consumer

Consumer

<<FInest>>

CEP Runtime Engine

Rules definitions

Rules Store

Figure 2: EPM high level architecture

3.2. EPM complex event processing run-time technical
specification

Figure 3 shows the internal architecture of the CEP runtime engine.

<<FInest>>

CEP Runtime Engine

<<FInest>>

Agent Manager

<<FInest>>

Adapters
<<FInest>>

Pre-processing
<<FInest>>

AgentQueue

<<FInest>>

ContextService

<<FInest>>

Event Processing Agent

<<FInest>>

Proactive Agent

processEvent(rawEvent)

processEvent(outputEvent)

processEvent(inputEvent) processEvent(event)

processEvent(event)

putEventInQueue(event)

processEvent(derivedEvent)processNotification(uncertainEvent)

getContextPartitions(event)

Figure 3: EPM complex event processing run-time architecture

The adapters component incorporates both input and output adapter sub-components (see

Section 2.2).

 Input adapters are responsible for accepting raw events from producers, e.g., from file,

JMS (Java Message Service) or REST, converting them into the format that is required

by the engine and sending them for preprocessing.

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 15 of 25

 Output adapters receive derived events and proactive notifications and send them to

consumers, e.g., to file, JMS, REST.

The Preprocessing component is responsible for decisions related to further routing of the

accepted event. An event can be routed to a specific agent queue (in case it is an input event) or

it can be routed to output adapter (in case it is a derived event) or both. This component

preprocesses derived events and proactive notifications and decides whether they will be further

processed by the engine (feedback loop) or will be forwarded to output adapters.

The AgentQueue component maintains event queues for the different agent types and contexts

that these agents are associated with. For each event in a queue, a list of relevant context

partitions is retrieved from the ContextService (which manages all active context partitions),

then the event is sent to event processing/proactive agent instances that are associated with these

partitions.

These steps are described in the sequence diagram of Figure 4.

Figure 4: Flow of events into, within, and out of the complex event processing engine

3.3. EPM interfaces with other components

The BCM is responsible for sending the entire set of rules to the EPM. This is performed for

each TCP upon shipment initiation. Both rules and events are sent by the BCM to the EPM via a

REST API. The EPM activates relevant rules for the entire TCP and each TEP upon TEP

initiation event, and deactivates them upon a TEP termination event.

The Rules activator is responsible for selection and activation of rules relevant for each TEP

based on information received from the BCM.

The CEP engine produces detected situations and proactive notifications to the BCM and the

FInest frontend correspondingly.

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 16 of 25

Figure 5 presents how FInest architectural elements interact with the EPM to realize the event

interactions described.

EPM

<<Finest>>

CEP Runtime Engine

<<Finest>>

Backend

(IOT, Legacy Systems…)

<<Finest>>

Frontend

<<Finest>>

BCM

<<FInest>>

Rules Activator

Rules Store
<<FInest>>

Selector

activateRules(rules)

processEvent(derivedEvent)
activateRules(JSON rules)

putProactiveNotification(notificaion)

putDetectedSituation(situation)processEvent(rawEvent)

processEvent(rawEvent)

Figure 5: EPM interactions with other components

The steps carried out by the CEP engine upon an arrival of a new set of rules (i.e. initialization

of new EPN constructs) is illustrated in Figure 6.

Figure 6: CEP engine set-up

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 17 of 25

3.4. FInest EPM with FI-WARE GEs

Conceptually, the FInest CEP engine can be implemented based on the FI-WARE CEP GE,

except for the proactive capabilities that differentiate the FInest CEP from currently available

complex events engine.

Figure 7 depicts the FInest EPM with the implementation of FI-WARE GEs. We note that at

this stage we envisage the implementation of two FI-WARE GEs: the CEP engine and the

PUB/SUB engine. The Pub/Sub GE will provide the mechanism to get events from external and

IoT systems3.

As discussed previously, the CEP GE engine will provide the necessary event processing

capabilities except for proactivity. This latter capability will be realized by a specific component

that will encompass the specific proactive agents (see Proactive Agent component in the

diagram).

The (FI-WARE) CEP GE is currently a standalone application (not a web application) that can

invoke other components via a REST API for putting produced events; however, other

applications can not push events into it in a RESTful manner. The events repository component

bridges this gap – the BCM pushes events to this repository and they are later pulled by the CEP

GE in order to process them.

The Rules Activator is also a FInest specific component that is responsible for translating a set

of rules from the BCM to a format required by the CEP GE (see also diagram in

Figure 5).

The Proactive Agent is a piece of software accountable for processing future events and

forecasting detected situations.

EPM

<<FI-WARE>>

CEP GE
<<FInest>>

Proactive Agent
<<FInest>>

Frontend

<<FInest>>

Backend

(IOT, Legacy Systems…)

<<FInest>>

BCM

Events repository
Interaction to be provided by FI-WARE

Events (push)

activateRules(JSON rules)

<<FI-WARE>>

Pub/Sub GE

<<FInest>>

BCM

activateRules(rules)

Events (pull)

<<Finest>>

Rules Activator

putProactiveNotification(notificaion)

putDetectedSituation(situation)

3 http://forge.fi-

ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Data.PubSub

http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Data.PubSub
http://forge.fi-ware.eu/plugins/mediawiki/wiki/fiware/index.php/FIWARE.ArchitectureDescription.Data.PubSub

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 18 of 25

Figure 7: FInest EPM with FI-WARE GEs

3.5. Interfaces data types and definitions

Interactions between various components carry data types as detailed in Figure 8.

Header

EventType: String

OccurrenceTime: DateTime

Annotation: String

…

Payload

TCPId: String

TEPId: String

...

<<FInest>>

EventInstance

TCPId: String

TEPId: String

ActiveRules: Collection<String>

Parameters: Map<String,<Collection<String>>

<<FInest>>

RulesDefs&Parameters

Header

EventType: String

OccurrenceTime: DateTime

Annotation: String

…

Certainty: Double

Payload

TCPId: String

TEPId: String

...

<<FInest>>

ProactiveNotification

Header

EventType: String

DetectionTime: DateTime

Annotation: String

…

Payload

TCPId: String

TEPId: String

...

<<FInest>>

DetectedSituation

Figure 8: Interfaces and data types

Note that while the EventInstance and DetectedSituation data types have the same structure, the

ProactiveNotification also includes the Certainty attribute. ProactiveNotification encloses

information regarding an uncertain future event. The Certainty attribute is a value in the [0,1]

range representing the probability of this event happening (see Section 2.1.1). The

ProactiveNotification is an output of the PRA and the Certainty attribute is calculated by

predictive models used by this PRA.

In general, the EPM offers three main services or interfaces (the interfaces with its

corresponding methods are shown in Figure 9):

 The EventSourcing interface, that allows connecting event sources to the EPM;

 The RulesActivation interface, that allows activating pre-defined event types and rules

for a specific transport instance; and

 The EventNotification interface, that allows being notified about identified detected

situations.

processEvent1(EventInstance rawEvent): Response

processEvent2(EventInstance rawEvent): Response

<<FInest>>

EventSourcing

putDetectedSituation(EventInstance situation): Boolean

putProactiveNotification(IEventInstance notification): Boolean

<<FInest>>

EventNotification

activateRules(JSONObject rules): Boolean

<<FInest>>

RulesActivation

Figure 9: EPM interfaces and methods

The methods/operations grouped by interface are detailed in Table 2 and are shown in the

architecture diagrams in Figures 2, 3, 5, and 7. Note that the source and target columns in the

table denote current connections as they appear in the architecture figures. Additional

connections (e.g. for phase 2) are possible. For example, proactive notifications could also be

connected to other modules in the platform in addition to the frontend.

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 19 of 25

Table 2: Methods definitions by interfaces

Method name Source Target Description Data

Interface: EventSourcing

processEvent1 BCM EPM Process raw event (event

arriving from BCM), e.g.,

cancellation of booking,

deviation in cargo or

schedule, delivery pickup

delay etc.

EventInstance

- header:

EventType,

OccurrenceTime,

Annotation…

- payload:

event instance specific

attributes

processEvent2 Backend EPM Process raw event (event

arriving from Backend –

IoT and legacy systems),

e.g., sensors

measurements for

container with cargo etc.

EventInstance

- header:

EventType,

OccurrenceTime,

Annotation…

- payload:

event instance specific

attributes

Interface: RulesActivation

activateRules BCM EPM Activate set of rules

associated with a specific

TCP (and its TEPs). This

method is invoked once

upon TCP initiation, and

it incorporates the entire

set of rules to activate +

parameters for templates.

RulesDefs&Parameters

A list of rules for a specific

TCP, including all its TEPs.

For templates - parameters

values are also provided.

This list should be well

structured, so that it will be

possible to automatically

translate rules to (JSON)

definition which is an input

to CEP engine.

Interface: EventNotification

putDetectedSituation EPM BCM Put a notification about

detected situation to

BCM, e.g., a significant

deviation in cargo or

schedule occurred, a

delivery was not picked

up as scheduled, import

DetectedSituation

- header:

EventType,

OccurrenceTime,

Annotation…

- payload:

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 20 of 25

license did not arrive for

a shipment etc.

Detected situation specific

attributes

putProactiveNotific

ation

EPM Frontend Put a proactive

notification about

(uncertain) future event

to Frontend, e.g.,

possible future

significant schedule

deviation due to high

probability to miss a

flight.

ProactiveNotification

- header:

EventType,

FututreOccurrenceTime,

Certainty, Annotation

- payload:

Proactive notification

specific attributes

4. Phase 2 implementation plan of the event
processing module

As previously noted, the EPM will be part of the core B2B collaboration module in the

envisioned cSpace platform. More specifically, the FInest EPM has been mapped into the two

following Tasks in cSpace:

 Subtask 242: Event processing support in the "Real-time B2B Collaboration"

component

 Subtask 451: “Real-time Exception Detection and Handling" baseline application

4.1. cSpace B2B Collaboration module (Task 240)

WP200 "cSpace development" will be accountable for the development of the envisioned

cSpace platform components in the form of Tasks as depicted in

Task 220: Front-End

Ta
sk

 2
6

0
: O

p
e

ra
ti

n
g

En
vi

ro
n

m
en

t

Ta
sk

 2
8

0
: D

e
ve

lo
p

m
e

n
t

En
vi

ro
n

m
e

n
t

Task 270: Security, Privacy & Trustworthiness

Task 230: Store and Revenue Management

Task 250: System & Data Integration

Task 210: cSpace Development Coordination

Task 240: Real-time B2B Collaboration

Task 220: Front-End

Ta
sk

 2
6

0
: O

p
e

ra
ti

n
g

En
vi

ro
n

m
en

t

Ta
sk

 2
8

0
: D

e
ve

lo
p

m
e

n
t

En
vi

ro
n

m
e

n
t

Task 270: Security, Privacy & Trustworthiness

Task 230: Store and Revenue Management

Task 250: System & Data Integration

Task 210: cSpace Development Coordination

Task 240: Real-time B2B Collaboration

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 21 of 25

Figure 10. Task 240 "Real-time B2B Collaboration" is, in fact, the natural follow up of the EPM

and BCM modules in FInest. This task is concerned with implementing the cSpace real-time

B2B collaboration concept, allowing executing, monitoring and controlling collaborative

business processes at the heart of cSpace. The aim is to implement the collaboration component

based on the artefact-centric approach, and implementing the event processing component based

on complex event processing and enhanced it to enable proactive event processing. Task 240 in

cSpace includes the development of interoperability components between the collaboration and

event processing components to include event-based rule generation, impact of events on

collaboration objects, generating appropriate events by the collaboration management

component for tracking, and more. In summary, the major outcomes of this task are:

 Implementation of collaboration management component, exploiting notion of

collaboration objects.

 Implementation of event management component, allowing for monitoring and

predicting collaborative processes.

 Integration and implementation of technical interoperability mechanisms for

collaboration management and event management components.

Task 220: Front-End

Ta
sk

 2
6

0
: O

p
e

ra
ti

n
g

En
vi

ro
n

m
en

t

Ta
sk

 2
8

0
: D

e
ve

lo
p

m
e

n
t

En
vi

ro
n

m
e

n
t

Task 270: Security, Privacy & Trustworthiness

Task 230: Store and Revenue Management

Task 250: System & Data Integration

Task 210: cSpace Development Coordination

Task 240: Real-time B2B Collaboration

Task 220: Front-End

Ta
sk

 2
6

0
: O

p
e

ra
ti

n
g

En
vi

ro
n

m
en

t

Ta
sk

 2
8

0
: D

e
ve

lo
p

m
e

n
t

En
vi

ro
n

m
e

n
t

Task 270: Security, Privacy & Trustworthiness

Task 230: Store and Revenue Management

Task 250: System & Data Integration

Task 210: cSpace Development Coordination

Task 240: Real-time B2B Collaboration

Figure 10: WP200: cSpace development (source: cSpace proposal)

Specifically, the cSpace event processing module will be implemented based on FInest EPM

specification as Subtask 242 "Event processing support". This subtask shall include:

 Complex event processing engine based on FI-WARE CEP GE

 Extensions to the CEP engine to enable proactive capabilities

 Configuration and authoring tools to enable the definition of the rules

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 22 of 25

4.2. Real-time exception detection and handling baseline
application

One of the main objectives of cSpace WP400 "Use case trials" is concerned with the

development of generic and domain-specific test applications to test and analyse the cSpace

offered platform. Task 450 in cSpace targets this objective and is composed of three primary

tasks: (i) selecting, developing and deploying cross-domain general “baseline” applications; (ii)

aligning and managing application development activities related to the early trials; and (iii)

defining technical application requirements for the open call. Baseline applications are

applications defined in phase 1, as being of a general nature, which shall add functionalities to

the execution of the early trials in phase 2. These apps are based on the services of cSpace, and

can be mashed up to other apps to provide enhanced functionalities. Specifically, subtask 451

"Development of the cross-domain baseline applications" is accountable for the implementation

of the cSpace baseline applications. Four different baseline applications have been identified so

far for implementation: (1) Business services and contract management, (2) Logistics planning,

(3) Product information service, and (4) Real-time exception detection and handling.

The EPM follow up work will be reflected in the "Real-time exception detection and handling"

application by enabling the configuration of a set of rules by defining constraints, observations,

and mediations for the application business processes. The Real-time Exception Detection and

Handling facility will constantly check the compliance to these constraints and will therewith

able to detect potential process violations. Predefined exception handlers will allow an

immediate reaction to these deviations, with or without direct user involvement. The definition

of constraints and exception handlers can be based on a set of rules, which are defined by the

user beforehand. By this, the process monitoring can be adapted to the needs of particular end-

users and scenarios. In essence, the Real-time Exception Detection and Handling enables users

to define constraints, observations and mitigation actions for business process instances. To this

end, the application continuously checks the compliance of these constraints to the actual

situation and execution of business processes and thus can – in real-time – detect potential

violations. In case of violations, pre-defined exception handlers allow an immediate reaction

with short delay. The definition of constraints and exception handlers is supported by a set of

rules, which can be defined by the user beforehand. Thereby, process monitoring, tracking and

tracing can be adapted to the needs of particular end-users, and even to specific scenarios and

tasks.

The cSpace B2B Collaboration Core provides the global knowledge base for all managed

business processes and their execution as well as reactive and proactive event monitoring to

detect situations of interest. While the cSpace B2B Collaboration Core provides generic

mechanisms, more targeted solutions are required that address deviation detection and handling

– a requirement identified for most of the trials in cSpace.

Brief summary of main features:

 Adaption of business process monitoring and management to different end-user

demands and scenarios, thereby allowing (1) definition observation of user-defined

business process constraints, (2) execution of pre-defined exception handlers as

immediate reaction to deviations and to mitigate deviations;

 Multi-channel and predictive notification distribution depending on urgency and user

demands.

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 23 of 25

4.3. EPM phase 2 implementation plan Gantt chart

Subtasks 242 and 451 have been outlined on a Gantt chart in Figure 11 along with their

respective deliverables. The development of both the event processing module and the base

application will be aligned to the project milestones and releases as shown in the Gantt chart.

The idea is to have several releases with incremental versions and enhanced capabilities until

the final release. We list below the relevant project milestones for each of the two subtasks and

also the relevant deliverables along with a brief description.

4.3.1. List of relevant project milestones

Table 3 depicts the relevant project milestones for the two cSpace subtasks related to FInest

EPM, i.e. subtasks 242 and 451. For a full description of the milestones refer to D3.4 "Technical

specification of domain specific FI platform for transport and logistics and phase 2

implementation plan" (to be submitted at M24) and cSpace proposal.

Table 3: Relevant cSpace project milestones

cSpace Project milestone Relevant milestones to 242 and 451 subtasks

MS1 Consolidation (M3)
Consolidated conceptual design; detailed release plan;

development sup-port facilities set-up

Release and development plan for Apps

MS2 Specification (M6) Public release of cSpace specification (technical design)

MS3 Release V1 (M9)

1st release of cSpace core feature prototypes ready for trials

(internal)

1st release of baseline applications and identification of

requirements for domain applications

MS4 Trial-Round 1 & Large

scale expansion (M12)

Maintenance up-dates of cSpace V1

MS5 Release V2 (M15)

2nd release of cSpace (public)

2nd release of applications

MS6 Trial-Round 2 (M 18) Maintenance up-dates of cSpace V2

MS7 Release V3 (M21) 3rd and final release of cSpace (public)

3rd release of applications

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 24 of 25

MS8 Trial-Round 3 (M 24) Maintenance up-dates of cSpace V3

4.3.2. List of Planned deliverables

For Subtask 242 Event processing support (shown as a blue diamond in Figure 11)

cSpace Technical Architecture and Specification (M6, Type: Report)

The Technical Architecture of the cSpace along with the detailed technical specification of each

of its components.

cSpace Integrated Release V1 (M9, Type: Prototype)

The first release (V1) of the cSpace, encompassing the implementations along with usage,

guidance, and technical documentation of each cSpace component.

cSpace Development Progress Report and V1 Updates (M12, Type: Report + Prototype)

Report on cSpace development progress with updates on the release plan and on the technical

architecture and implementations of the cSpace components from release V1 where necessary.

cSpace Integrated Release V2 (M15, Type: Prototype)

The second release (V2) of the cSpace, encompassing the implementations along with usage

guidance and technical documentation of each cSpace component.

cSpace Development Progress Report and V2 Updates (M18, Type: Report + Prototype)

Report on cSpace development progress with updates on the release plan and on the technical

architecture and implementations of the cSpace components from release V2 where necessary.

cSpace Integrated Release V3 (M21, Type: Prototype)

The third release (V3) of the cSpace, encompassing the implementations along with usage,

guidance, and technical documentation of each cSpace component.

cSpace Development Final Report and V3 Updates (M24, Type: Report + Prototype)

Final report on the cSpace Development activities with updates on the technical architecture and

implementations of the cSpace components from release V3 where necessary.

For Subtask 451 Real-time exception detection and handling (shown as a red diamond in

Figure 11)

Functionalities of baseline applications (M3, Type: Report)

Full definition and explanation of the functionalities of the baseline applications, documented in

the project Wiki.

Baseline applications 1st release (M9, Type: Prototype)

Including the documentation release of the applications in the project Wiki

Baseline applications 2nd release (M15, Type: Prototype)

FP7-2011-ICT-FI — FInest

© D6.5 Final technical specification and phase 2 implementation plan for the EPM V1.0 Page 25 of 25

Including the documentation release of the applications in the project Wiki

Baseline applications 3rd release (M21, Type: Prototype)

Including the documentation release of the applications in the project Wiki

4.3.3. Gantt chart

Figure 11 shows the timeline of the two subtasks related to the EPM in phase 2 of the project

along with the relevant project milestones and deliverables.

ID Task Name Start Finish

Q2 13 Q3 13 Q4 13 Q1 14 Q2 14 Q3 14 Q4 14 Q1 15

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

1

2

3

01/04/201501/04/2013Project Milestones

30/03/201501/09/2013
Real-time B2B collaboration event processing

support

01/01/201501/04/2013
Real-time exception detection and handling base

application

ID Task Name Start Finish

Q2 13 Q3 13 Q4 13 Q1 14 Q2 14 Q3 14 Q4 14 Q1 15

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

1

2

3

01/04/201501/04/2013Project Milestones

30/03/201501/09/2013
Real-time B2B collaboration event processing

support

01/01/201501/04/2013
Real-time exception detection and handling base

application

Figure 11: EPM phase 2 implementation plan Gantt chart

5. Summary

This report summarizes the work achieved so far in WP6 "Proactive Event Driven Monitoring"

of FInest and reflects its continuation through the cSpace follow up project implementation

plan. This report is composed of two main parts, the finalization of the specification of the EPM

module in FInest, and the details of its implementation in phase 2 of the project. The EPM

module will become one of the two core modules that will constitute the cSpace platform.

